m-PRIMARY m-FULL IDEALS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON FIBER CONES OF m-PRIMARY IDEALS

Two formulas for the multiplicity of the fiber cone F (I) = ⊕∞n=0I /mI of an m-primary ideal of a d-dimensional Cohen-Macaulay local ring (R,m) are derived in terms of the mixed multiplicity ed−1(m|I), the multiplicity e(I) and superficial elements. As a consequence, the Cohen-Macaulay property of F (I) when I has minimal mixed multiplicity or almost minimal mixed multiplicity is characterized ...

متن کامل

On m - Primary Irreducible Ideals in F [ x ,

At the beginning of the last century F. S. Macaulay developed an elegant theory (see [4] Part IV) describing homogeneous ideals in polynomial rings. This theory makes the maximal-primary irriducible ideals I ⊂ Fýz1 , . . . , znü correspond to a single homogeneous inverse polynomial θI ∈ Fýz−1 1 , . . . , z−1 n ü. Macaulay’s theory has recently attracted attention in connection with problems ari...

متن کامل

Lipschitz Spaces and M -ideals

For a metric space (K, d) the Banach space Lip(K) consists of all scalar-valued bounded Lipschitz functions on K with the norm ‖f‖L = max(‖f‖∞, L(f)), where L(f) is the Lipschitz constant of f . The closed subspace lip(K) of Lip(K) contains all elements of Lip(K) satisfying the lip-condition lim0<d(x,y)→0 |f(x) − f(y)|/d(x, y) = 0. For K = ([0, 1], | · |), 0 < α < 1, we prove that lip(K) is a p...

متن کامل

On the reducible $M$-ideals in Banach spaces

The object of the investigation is to study reducible $M$-ideals in Banach spaces. It is shown that if the number of $M$-ideals in a Banach space $X$ is $n(<infty)$, then the number of reducible $M$-ideals does not exceed of $frac{(n-2)(n-3)}{2}$. Moreover, given a compact metric space $X$, we obtain a general form of a reducible $M$-ideal in the space $C(X)$ of continuous functions on $X$. The...

متن کامل

Projective Bundle Ideals Constructions of m-primary irreducible Ideals in Polynomial Algebras

The study of m-primary irreducible ideals in a commutative graded connected Noetherean algebra over a field is in principal equivalent to the study of the corresponding quotient algebras. Such algebras are Poincaré duality algebras. The prototype of such an algebra (apart from the cosmetic difference of being graded commutative rather than commutative graded) is the cohomology with field coeffi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Chungcheong Mathematical Society

سال: 2013

ISSN: 1226-3524

DOI: 10.14403/jcms.2013.26.4.799